Outcome of Laparoscopic Adrenalectomy in Obese Patients

Diana PAUNa; Rodica PETRISa; Roxana GANESCUb; Sorin PAUNb; Mihaela VARTICb; Mircea BEURANb

a „C. I. Parhon” National Institute of Endocrinology, Bucharest, Romania
b Emergency Hospital Bucharest, Romania

ABSTRACT

Objectives: To compare early morbidity of obese and nonobese patients with minimally invasive adrenalectomies.

Method: Retrospective study of a prospectively maintained database, between June 2003 – December 2012, in a university affiliated tertiary hospital. Selection criteria: Minimally invasive adrenalectomy. Obese patients were defined as BMI over 30 kg/m².

Results: From 205 patient with laparoscopic adrenalectomies we counted 30 obese patients (OG), 25 of them female and only 5 men with a median age of 54.20 years versus 47.94 years for nonobese group (NOG) (p=0.008). In OG were 15 right sided tumor, 11 on the left side and 4 bilateral all treated with transperitoneal antero-lateral approach. Median operating time was 92.20 minutes for OG versus 91.13 minutes for NOG (p=0.924). In OG, 5 patients had previous abdominal surgeries and we counted 4 conversion to open surgery, 2 postoperative complications (6.6%) and no mortality. All OG patients have diverse comorbidities, 50% of them more then 3. Median specimen size was 5.92 cm for OG versus 4.85 cm for NOG (p=0.057). The histology of OG was: adenoma 11 cases, hyperplasia 13 cases and pheochromocytoma 6. In NOG we had: postoperative hospital stay was 6.57 days in OG versus 4.11 days in NOG (p=0.009).

Conclusions: Although obese patients had a higher rate for early morbidities, the minimally invasive approach has particular benefits for them. Although postoperative hospital stay was significantly longer, we believe that advantages of minimal invasive surgery for obese patients remains valid even in a BMI over 30.

Keywords: laparoscopy, adrenalectomy, obesity, early morbidity.

INTRODUCTION

After 1992, when Gagnier (1) and Higashihara (2) independently described the first laparoscopic adrenalectomy, this approach became the gold standard for adrenal pathology. Although at the beginning the indications were limited, due to its very low morbidity and mortality, the laparoscopic approach of adrenal pathology gained more popularity. The indications for minimally invasive approach have expanded to include the pheochromocytoma (3-6), malignancies (7-9), and tumors larger then 6 cm (10-13). Nowadays, the medical literature does not present any absolute contraindication, related to patient’s age or BMI.
The rapid success (14) of laparoscopic adrenalectomy was caused by its proven advantages (15,16), such as reduced mortality, high patients satisfaction, reduced need for analgetics, shorter hospital stay (17) (till one day surgery (18)), better cosmesis, shorter convalescence. The laparoscopic approach has also benefits for the operating surgeon, due to retroperitoneal deep location of the adrenal glands, the open approach requiring an extensive dissection, time consuming and traumatic for neighboring organs.

In the 21st century, the world population became older (19), with more and more comorbidities. On the other hand, in the developed countries, the median BMI is continuously increasing (20,21). On literature searching we found no study that contraindicate the laparoscopic adrenalectomy for obese patients.

The obesity itself has a strong correlation with patients’ comorbidities (22-24), such as diabetes, cardiovascular diseases (25), sleep apnea, depresions (26). The surgical management of obese patients is quite demanding, these patients requiring a multidisciplinary care (27). Obesity is frequently associated with adrenal diseases (28,29). In this study we are evaluating the effects of obesity on minimally invasive adrenalectomy.

MATERIAL AND METHODS

The main objective of this study is to define the early morbidity and mortality in obese patients with laparoscopic adrenalectomies. The cutoff value used to define obesity was 30 kg/m². Study design: Retrospective study of a prospectively maintained database. Study interval: 9 years (June 2003-December 2012). Setting: Emergency Hospital of Bucharest, Romania. Selection criteria: Minimally invasive adrenalectomy. All patients were managed by a constant surgical-anesthesical team, in the General Department of Surgery of the Emergency Hospital Bucharest, Romania. The preoperative workup and the postoperative follow-up was performed in over 99% of cases at the C.I. Parhon National Institute of Endocrinology Bucharest, Romania. All patients had a preoperative imaging, either through CT or MRI and all pheochromocytoma cases were treated for at least 14 days preoperatively with α +/− β blockers. Our laparoscopic technique includes only the transperitoneal approach, with the patient in lateral decubitus, using four 10 mm trocars and a 12 mm Hg pneumoperitoneum.

All values are presented as mean ± standard deviation for continuous variables, or percentages for categorical variables. Means are compared using Independent Samples T-test, and categorical variables with Fischer’s exact test. We have used to declare statistical significance a p value < 0.05. For statistical analysis we have used IBM SPSS statistics 20.0 for Windows.

OUTCOMES

In a 9 and half year period there were 215 laparoscopic adrenalectomies for 205 patients with different adrenal pathologies. There were 226 specimens, 10 patients being treated separately for each side and 11 patients with bilateral approach during the same surgery. Table 1. 30 patients had a BMI over 30 Kg/m², 25 female and 5 male. Figure 1.

Median patients age for obese group was 54,20 years (with a minimum of 35 and a maximum of 75), versus 47.94 years for patients with a BMI lower than 30 kg/m² (p = 0.008) (Table 2). In the OG, there were 15 right, 11 left and 4 bilateral adrenalectomies (Figure 2). 5 out of 30 patients had previously major open abdominal surgeries and 21 patients had more than three comorbidities. The obesity status includes: 16 patients with grad I (BMI 30-34.9), 8 patients with grad II (BMI 35-39.9), 6 patients with grad III (≥40) and no patient with morbid obesity (Figure 3).
The operating time for obese patients was 25 – 260 minutes, with a mean of 92.20 minutes (Table 3), while for NOG it was 91.13 minutes (p=0.924). Due to the previous abdominal surgeries, in two cases we have performed an extended laparoscopic adhesiolysis.

There were 4 conversions (13.3% in OG versus 9% in the NOG) to open surgery (3 on the right side and 1 of the left side). We had one reverse conversion, on the right side, from the open to laparoscopic approach, due to difficulty to reach the adrenal gland. Reason for conversions were bleeding in one case, local adhesions in one case and the specimen size in 2 cases. The size of the specimens was of 2–20 cm, with a median of 5.92 cm for OG (Table 4), while this was 4.85 cm for NOG (p = 0.057).

There were 3% (6 cases) of postoperative complications in the entire group of study. According to Clavien-Dindo classification there were 2 (6.6%) postoperative complications in the OG (both with left laparoscopic adrenalectomy). These two complications were a faecal peritonitis and a bleeding, both requiring surgical reintervention. Intraoperative blood lose was 20-300 ml, and no patient required intraoperative transfusions.

Postoperatively all patients were early mobilized, at 6-8 hours after surgery, starting the oral intake at 6 hour.

In OG the histology findings were: adeno-ma (11 cases), hyperplasia (3 cases) and pheochromocytoma (6 cases) (Table 5).

Mean postoperative hospital stay in OG was 6.57 days (2-50 days) (Table 6) comparing with 4.11 days for NOG (p = 0.009). We have no mortality and no recurrence till date.

DISCUSSION

Even from the beginning of laparoscopic era in the adrenal pathology, there were debates related to the indications and advantages over open approach (30-32). With time all the benefits of laparoscopic approach were well documented, with numerous studies within the last years (14-16). It is considered that experience in laparoscopic approach is required in order to prevent gland fragmentation that can lead to disease recurrence (33) and most of the conversions to open surgery occurred in learning curve (34-36). Although the tumor size and its impact was a addressed by other researchers even from the beginning of the laparoscopy (10,12,13), a special attention for obese patients was not common. The literature presents as many as 30% of this patients being obese. Erbil et al. described in 2010 that, in the obese patients, the amount of retroperitoneal fat is responsible for difficulty of surgery and not the BMI itself (37).
Complications of the laparoscopic adrenalectomy for obese patients, both intra and postoperative, are similar with those for other laparoscopic surgeries such as cholecystectomy (38), colectomy surgery (39-41), gastric surgery (42), appendectomy (43-45) and is reported with a frequency of 4.6-32% (46-49).

A recent study of Askoy et al. (50) demonstrated that, in obese patients, the robotic adrenalectomy presents no notable advantages over laparoscopic approach, opposite to other pathologies, such as endometrial cancer (51), where is the procedure of choice. We performed only anterolateral transabdominal approach, other groups are poposing the retroperitoneal approach, for being more feasible in obese patients (52-54) or for patients with previous abdominal surgeries (55,56).

The laparoscopic approach of the pheochromocytoma was initialy considered dangerous due to the risk of hemodynamic instability (57). With a proper preoperative and intraoperative therapy (58) it can be safely performed, even in obese patients. We had in our group 6 obese patients with pheochromocitoma succefully treated bya minimally invasive approach. The operating time and the hospital stay decreased after the learning curve and the team’s experience (16), this being the case also for the obese patients, although these remains longer than for nonobese patients (59). We have observed a rate of intra- and postoperative complications of 13% for NOG, comparing with 9% in the NOG. Other groups are reporting a rate of postoperative complications of 4.6-32% (46, 47).

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Valid</td>
</tr>
<tr>
<td></td>
<td>Missing</td>
</tr>
<tr>
<td>Mean</td>
<td>54.20</td>
</tr>
<tr>
<td>Median</td>
<td>56.00</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>11,278</td>
</tr>
<tr>
<td>Minimum</td>
<td>35</td>
</tr>
<tr>
<td>Maximum</td>
<td>75</td>
</tr>
<tr>
<td>Percentiles</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>75</td>
</tr>
</tbody>
</table>

TABLE 2. Patient’s age.

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Operating time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Valid</td>
</tr>
<tr>
<td></td>
<td>Missing</td>
</tr>
<tr>
<td>Mean</td>
<td>92.20</td>
</tr>
<tr>
<td>Median</td>
<td>80.00</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>51,759</td>
</tr>
<tr>
<td>Minimum</td>
<td>25</td>
</tr>
<tr>
<td>Maximum</td>
<td>260</td>
</tr>
<tr>
<td>Percentiles</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>75</td>
</tr>
</tbody>
</table>

TABLE 3. Operating time.

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Specimen size (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Valid</td>
</tr>
<tr>
<td></td>
<td>Missing</td>
</tr>
<tr>
<td>Mean</td>
<td>5.92</td>
</tr>
<tr>
<td>Median</td>
<td>4.00</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>3,826</td>
</tr>
<tr>
<td>Minimum</td>
<td>2</td>
</tr>
<tr>
<td>Maximum</td>
<td>20</td>
</tr>
<tr>
<td>Percentiles</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>75</td>
</tr>
</tbody>
</table>

TABLE 4. Specimen size (cm).

<table>
<thead>
<tr>
<th>Histology</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td>11</td>
<td>36.7</td>
<td>36.7</td>
<td>36.7</td>
</tr>
<tr>
<td>Hyperplasia</td>
<td>13</td>
<td>43.3</td>
<td>43.3</td>
<td>80.0</td>
</tr>
<tr>
<td>Pheochromocytoma</td>
<td>6</td>
<td>20.0</td>
<td>20.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 5. Pathology of the resected specimen.

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Hospital stay (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Valid</td>
</tr>
<tr>
<td>Mean</td>
<td>6.57</td>
</tr>
<tr>
<td>Median</td>
<td>4.00</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>9,954</td>
</tr>
<tr>
<td>Minimum</td>
<td>2</td>
</tr>
<tr>
<td>Maximum</td>
<td>50</td>
</tr>
<tr>
<td>Percentiles</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>75</td>
</tr>
</tbody>
</table>

TABLE 6. Hospital stay (days).
CONCLUSION

The laparoscopic adrenalectomy is feasible in obese patients, regardless of the adrenal pathology, including pheochromocytoma. Although the operating time and the hospital stay are prolonged, there were not differences regarding the postoperative complications. The laparoscopic resection of the adrenal tumors comes with all the benefits of the minimally invasive approach, such as lower intraoperative blood loss, rapid mobilisation, better cosmetic aspect and faster recovery.

Conflict of interests: none declared.

Acknowledgement: This paper is supported by the Sectorial Operational Programme Human Resources Development (SOP HRD) 2007-2013, financed from the European Social Fund and by the Romanian Government under the contract number POSDRU/107/1.5/S/82839.

REFERENCES

9. Lombardi CP, Raffaelli M, Boscherini CR. – Exercice laparoscopique des volumineux tumeurs de la surrenale
38. Tuveri M, Borsezio V, Calo PG, et al. – Laparoscopic cholecystectomy in the
obese results with the traditional and
39. Hardiman K, Chang ET, Diggs BS, et al. – Laparoscopic colectomy reduces
40. Heneghan HM, Martin ST, Kiran RP, et al. – Laparoscopic colorectal surgery
for obese patients: decreased conversions with the hand-assisted technique.
J Gastrointest Surg. 2013;17:548-54
42. Schwartz A, Etchechoury L, Collet D – Outcome after laparoscopic gastric
43. Clarke T, Katkhouda N, Mason RJ, et al. – Laparoscopic versus open
appendectomy for the obese patient: a subset analysis from a prospective,
44. Markar SR, Venkat-Raman V, Ho A, et al. – Laparoscopic versus open
45. Tan-Tam C, Yorke E, Wasdell M, et al. – The benefits of laparoscopic appen-
adrenalectomy in 75 patients treated by
the same surgeon. Eur Urol. 1999;36:40-7
47. Henry JF, Defechereux T, Raffaelli M, et al. – Complications of laparoscopic
adrenalectomy: results of 169 consecutive
48. Brunt LM – The positive impact of
laparoscopic adrenalectomy on
complications of laparoscopic adrena-
lectomy including single-site surgery.
50. Aksoy E, Taskin HE, Aliyev S, et al. – Robotic versus laparoscopic adrenalec-
51. Bernardini MQ, Gien LT, Tipping H, et al. – Surgical outcome of robotic
52. Mazeh H, Solorzano CC – Impact of surgical mentorship on retroperitoneo-
scopic adrenalectomy with comparison to transperitoneal laparoscopic
53. Mazeh H, Froysheter AB, Wang TS, et al. – Is previous same quadrant surgery
a contraindication to laparoscopic
adrenalectomy? Surgery. 2012;152:1211-
7
54. Pedziwiatr M, Matlok M, Kulawik J, et al. – Laparoscopic adrenalectomy by
the lateral transperitoneal approach in patients with a history of previous
55. Joris JL, Hamoir EE, Hartstein GM, et al. – Hemodynamic changes and
catecholamine release during laparo-
scopic adrenalectomy for pheochromo-
cytoma. Anesthesia and analgesia. 1999;88:16-21
56. Dimitriou V, Chantzi C, Zogogiannis
I, et al. – Remifentanil preventing
hemodynamic changes during
laparoscopic adrenalectomy for pheochromo-
cytoma. Middle East journal of anesthesiology. 2006;18:947-54
57. Ramirez-Plaza CP, Rodriguez-Canete
A, Dominguez-Lopez ME, et al. – [Development and evolution of
laparoscopic adrenalectomy in an
specialized team: from the beginning to the outpatient setting]. 2010;57:22-7.